Immunohistochemistry Detection Method of Rejection Reaction of Human Umbilical Cord Derived Mesenchymal Stem Cell on Rat Sciatic Nerve Tissue

Ria Margiana, Ahmad Aulia Jusuf, Silvia Werdhy Lestari

Abstract

Abstract:Human umbilical cord derived mesenchymal stromal cells (UC-MSCs) that are accessible from cell banks can be actuated to separate into different cell sorts, accordingly making them handy potential hotspots for cell-based treatments. In injured peripheral nerves, Schwann cells (SCs) add to useful recuperation by supporting axonal recovery and myelin remaking. Here, we first exhibit a framework to induce UC-MSCs to separate into cells with SC properties (UC-SCs) by treatment with β-mercaptoethanol took after by retinoic corrosive and an arrangement of particular cytokines. The UC-SCs are morphologically like SCs and express SC markers, including P0, as evaluated by immunocytochemistry and converse interpretation polymerase chain response. Transplantation of UC-SCs into transected sciatic nerves in grown-up rats improved nerve recovery. The viability of UC-SCs for axonal recovery was tantamount to that of legitimate human SCs taking into account histological criteria and useful recuperation. Immunohistochemistry and immunoelectron microscopy additionally showed myelination of recovered axons by UC-SCs. These discoveries demonstrate that cells with SC properties and with the capacity to bolster axonal recovery and reproduce myelin can be effectively actuated from UC-MSCs to advance practical recuperation after peripheral nerve injury. This framework might be pertinent for the advancement of cell-based treatments.

Full Text:

PDF

References

Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, Brigham KL. Bone marrow–derived mesenchymal stem cells in repair of the injured lung. American journal of respiratory cell and molecular biology. 2005 Aug;33(2):145-52.

Someya Y, Koda M, Dezawa M, Kadota T, Hashimoto M, Kamada T, Nishio Y, Kadota R, Mannoji C, Miyashita T, Okawa A. Reduction of cystic cavity, promotion of axonal regeneration and sparing, and functional recovery with transplanted bone marrow stromal cell-derived Schwann cells after contusion injury to the adult rat spinal cord: laboratory investigation. Journal of Neurosurgery: Spine. 2008 Dec;9(6):600-10.

Kim DW, Staples M, Shinozuka K, Pantcheva P, Kang SD, Borlongan CV. Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. International journal of molecular sciences. 2013 May 31;14(6):11692-712.

Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.;Jones, J.M. Embryonic stem cell lines derived from human blastocysts. Science 1998, 282, 1145–1147.

Gärtner, A., Pereira, T., Armada-da-Silva, P.A.S., Amorim, I., Gomes, R., Ribeiro, J., Franca, M.L., Lopes, C., Porto, B., Sousa, R. and Bombaci, A., 2012. Use of poly (DL-lactide-ε-caprolactone) membranes and mesenchymal stem cells from the Wharton's jelly of the umbilical cord for promoting nerve regeneration in axonotmesis: In vitro and in vivo analysis. Differentiation, 84(5), pp.355-365.

Tang, W.; Zeve, D.; Suh, J.M.; Bosnakovski, D.; Kyba, M.; Hammer, R.E.; Tallquist, M.D.; Graff, J.M. White fat progenitor cells reside in the adipose vasculature. Science 2008, 322, 583–586.

Borlongan CV, Kaneko Y, Maki M, Yu SJ, Ali M, Allickson JG, Sanberg CD, Kuzmin-Nichols N, Sanberg PR. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem cells and development. 2010 Apr 1;19(4):439-52.

Mitrečić D, Nicaise C, Gajović S, Pochet R. Distribution, differentiation, and survival of intravenously administered neural stem cells in a rat model of amyotrophic lateral sclerosis. Cell transplantation. 2010 May 1;19(5):537-48.

Kim S, Chang KA, Park HG, Ra JC, Kim HS, Suh YH. The preventive and therapeutic effects of intravenous human adipose-derived stem cells in Alzheimer’s disease mice. PLoS One. 2012 Sep 26;7(9):e45757.

Baldwin, T. Morality and human embryo research. Introduction to the talking point on morality and human embryo research. EMBO Rep. 2009, 10, 299–300.

Mimura T, Dezawa M, Kanno H, Yamamoto I. Behavioral and histological evaluation of a focal cerebral infarction rat model transplanted with neurons induced from bone marrow stromal cells. Journal of Neuropathology & Experimental Neurology. 2005 Dec 1;64(12):1108-17.

Jia H, Wang Y, Tong XJ, Liu GB, Li Q, Zhang LX, Sun XH. Sciatic nerve repair by acellular nerve xenografts implanted with BMSCs in rats xenograft combined with BMSCs. Synapse. 2012 Mar 1;66(3):256-69.

Laurent, L.C.; Ulitsky, I.; Slavin, I.; Tran, H.; Schork, A.; Morey, R.; Lynch, C.; Harness, J.V.; Lee, S.; Barrero, M.J.; et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human escs and ipscs during reprogramming and time in culture. Cell Stem Cell 2011, 8, 106–118.

Matsuse D, Kitada M, Kohama M, Nishikawa K, Makinoshima H, Wakao S, Fujiyoshi Y, Heike T, Nakahata T, Akutsu H, Umezawa A. Human umbilical cord-derived mesenchymal stromal cells differentiate into functional Schwann cells that sustain peripheral nerve regeneration. Journal of Neuropathology & Experimental Neurology. 2010 Sep 1;69(9):973-85.

Natsu K, Ochi M, Mochizuki Y, Hachisuka H, Yanada S, Yasunaga Y. Allogeneic bone marrow-derived mesenchymal stromal cells promote the regeneration of injured skeletal muscle without differentiation into myofibers. Tissue engineering. 2004 Jul 1;10(7-8):1093-112.

Salem AM, Ahmed HH, Atta HM, Ghazy MA, Aglan HA. Potential of bone marrow mesenchymal stem cells in management of Alzheimer's disease in female rats. Cell biology international. 2014 Dec 1;38(12):1367-83.

Zhang C, Lv G. Repair of sciatic nerve defects using tissue engineered nerves. Neural regeneration research. 2013 Jul 25;8(21):1985.

Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676.

Conconi, M.T.; Burra, P.; Di Liddo, R.; Calore, C.; Turetta, M.; Bellini, S.; Bo, P.; Nussdorfer, G.G.; Parnigotto, P.P. Cd105(+) cells from wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int. J. Mol. Med. 2006, 18, 1089–1096.

Gutierrez-Aranda, I.; Ramos-Mejia, V.; Bueno, C.; Munoz-Lopez, M.; Real, P.J.; Macia, A.; Sanchez, L.; Ligero, G.; Garcia-Parez, J.L.; Menendez, P. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 2010, 28, 1568–1570.

Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147.

Ogawa, M.; Larue, A.C.; Mehrotra, M. Hematopoietic stem cells are pluripotent and not just “hematopoietic”. Blood Cells Mol. Dis. 2013, 51, 3–8.

La Rocca, G.; Anzalone, R.; Corrao, S.; Magno, F.; Loria, T.; Lo Iacono, M.; Di Stefano, A.; Giannuzzi, P.; Marasa, L.; Cappello, F.; et al. Isolation and characterization of oct-4+/hla-g+ mesenchymal stem cells from human umbilical cord matrix: Differentiation potential and detection of new markers. Histochem. Cell Biol. 2009, 131, 267–282.

Gu Y, Wang J, Ding F, Hu N, Wang Y, Gu X. Neurotrophic actions of bone marrow stromal cells on primary culture of dorsal root ganglion tissues and neurons. Journal of molecular neuroscience. 2010 Mar 1;40(3):332-41.

Strakova, Z.; Livak, M.; Krezalek, M.; Ihnatovych, I. Multipotent properties of myofibroblast cells derived from human placenta. Cell Tissue Res. 2008, 332, 479–488.

Semenov, O.V.; Koestenbauer, S.; Riegel, M.; Zech, N.; Zimmermann, R.; Zisch, A.H.; Malek, A. Multipotent mesenchymal stem cells from human placenta: Critical parameters for isolation and maintenance of stemness after isolation. Am. J. Obstet. Gynecol. 2010, 202, e191–e193.

Prasanna, S.J.; Gopalakrishnan, D.; Shankar, S.R.; Vasandan, A.B. Pro-inflammatory cytokines, ifngamma and tnfalpha, influence immune properties of human bone marrow and wharton jelly mesenchymal stem cells differentially. PLoS One 2010, 5, e9016.

Bunnell, B.A.; Flaat, M.; Gagliardi, C.; Patel, B.; Ripoll, C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods 2008, 45, 115–120.

Rachakatla, R.S.; Pyle, M.M.; Ayuzawa, R.; Edwards, S.M.; Marini, F.C.; Weiss, M.L.; Tamura, M.; Troyer, D. Combination treatment of human umbilical cord matrix stem cell-based interferon-beta gene therapy and 5-fluorouracil significantly reduces growth of metastatic human breast cancer in scid mouse lungs. Cancer Investig. 2008, 26, 662–670.

Weiss, M.L.; Anderson, C.; Medicetty, S.; Seshareddy, K.B.; Weiss, R.J.; VanderWerff, I.; Troyer, D.; McIntosh, K.R. Immune properties of human umbilical cord wharton's jelly-derived cells. Stem Cells 2008, 26, 2865–2874.

Deuse, T.; Stubbendorff, M.; Tang-Quan, K.; Phillips, N.; Kay, M.A.; Eiermann, T.; Phan, T.T.; Volk, H.D.; Reichenspurner, H.; Robbins, R.C.; et al. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant. 2011, 20, 655–667.

Pappa, K.I.; Anagnou, N.P. Novel sources of fetal stem cells: Where do they fit on the developmental continuum? Regen. Med. 2009, 4, 423–433.

Marcus, A.J.; Woodbury, D. Fetal stem cells from extra-embryonic tissues: Do not discard. J. Cell. Mol. Med. 2008, 12, 730–742.

Selmani, Z.; Naji, A.; Zidi, I.; Favier, B.; Gaiffe, E.; Obert, L.; Borg, C.; Saas, P.; Tiberghien, P.; Rouas-Freiss, N.; et al. Human leukocyte antigen-g5 secretion by human mesenchymal stem cells is required to suppress t lymphocyte and natural killer function and to induce cd4+cd25highfoxp3+ regulatory t cells. Stem Cells 2008, 26, 212–222.

Maraldi T, Bertoni L, Riccio M, Zavatti M, Carnevale G, Resca E, Guida M, Beretti F, La Sala GB, De Pol A. Human amniotic fluid stem cells: neural differentiation in vitro and in vivo. Cell and tissue research. 2014 Jul 1;357(1):1-3.

Rey Nores, J.E.; Bensussan, A.; Vita, N.; Stelter, F.; Arias, M.A.; Jones, M.; Lefort, S.; Borysiewicz, L.K.; Ferrara, P.; Labeta, M.O. Soluble cd14 acts as a negative regulator of human t cell activation and function. Eur. J. Immunol. 1999, 29, 265–276.

Ilancheran, S.; Moodley, Y.; Manuelpillai, U. Human fetal membranes: A source of stem cells for tissue regeneration and repair? Placenta 2009, 30, 2–10.

Najar, M.; Rouas, R.; Raicevic, G.; Boufker, H.I.; Lewalle, P.; Meuleman, N.; Bron, D.; Toungouz, M.; Martiat, P.; Lagneaux, L. Mesenchymal stromal cells promote or suppress the proliferation of t lymphocytes from cord blood and peripheral blood: The importance of low cell ratio and role of interleukin-6. Cytotherapy 2009, 11, 570–583.

Tipnis, S.; Viswanathan, C.; Majumdar, A.S. Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: Role of b7-h1 and ido. Immunol. Cell Biol. 2010, 88, 795–806.

Conconi, M.T.; Di Liddo, R.; Tommasini, M.; Calore, C.; Parnigotto, P.P. Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: An overview. Open Tissue Eng. Regen. Med. J. 2011, 4, 6–20.

Gotherstrom, C.; Ringden, O.; Westgren, M.; Tammik, C.; Le Blanc, K. Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant. 2003, 32, 265–272.

Farin A, Liu CY, Langmoen IA, Apuzzo ML. Biological Restoration Of Central Nervous System Architecture And Function: Part 3—Stem Cell‐And Cell‐Based Applications And Realities In The Biological Management Of Central Nervous System Disorders: Traumatic, Vascular, And Epilepsy Disorders. Neurosurgery. 2009 Nov 1;65(5):831-59.

Gillman, M.W.; Rifas-Shiman, S.; Berkey, C.S.; Field, A.E.; Colditz, G.A. Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics 2003, 111, e221–e226.

Cho, P.S.; Messina, D.J.; Hirsh, E.L.; Chi, N.; Goldman, S.N.; Lo, D.P.; Harris, I.R.; Popma, S.H.; Sachs, D.H.; Huang, C.A. Immunogenicity of umbilical cord tissue derived cells. Blood 2008, 111, 430–438.

Djouad, F.; Charbonnier, L.M.; Bouffi, C.; Louis-Plence, P.; Bony, C.; Apparailly, F.; Cantos, C.; Jorgensen, C.; Noel, D. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 2007, 25, 2025–2032.

Zarkhin, V.; Talisetti, A.; Li, L.; Wozniak, L.J.; McDiarmid, S.V.; Cox, K.; Esquivel, C.; Sarwal, M.M. Expression of soluble hla-g identifies favorable outcomes in liver transplant recipients. Transplantation 2010, 90, 1000–1005.

Griffin, M.D.; Ritter, T.; Mahon, B.P. Immunological aspects of allogeneic mesenchymal stem cell therapies. Hum. Gene Ther. 2010, 21, 1641–1655.

Nakamizo, A.; Marini, F.; Amano, T.; Khan, A.; Studeny, M.; Gumin, J.; Chen, J.; Hentschel, S.; Vecil, G.; Dembinski, J.; et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res. 2005, 65, 3307–3318.

Tchoukalova, Y.; Koutsari, C.; Jensen, M. Committed subcutaneous preadipocytes are reduced in human obesity. Diabetologia 2007, 50, 151–157.

Tamura, M.; Kawabata, A.; Ohta, N.; Uppalapati, L.; Becker, K.G.; Troyer, D.Wharton’s jellystem cells as agents for cancer therapy. Open Tissue Eng. Regen. Med. J. 2011, 4, 39–47.

Pierdomenico, L.; Lanuti, P.; Lachmann, R.; Grifone, G.; Cianci, E.; Gialò, L.; Pacella, S.; Romano, M.; Vitacolonna, E.; Miscia, S. Diabetes mellitus during pregnancy interferes with the biological characteristics of wharton’s jelly mesenchymal stem cells. Open Tissue Eng. Regen. Med. J. 2011, 4, 103–111.

Di Nicola, M.; Carlo-Stella, C.; Magni, M.; Milanesi, M.; Longoni, P.D.; Matteucci, P.; Grisanti, S.; Gianni, A.M. Human bone marrow stromal cells suppress t-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002, 99, 3838–3843.

Aggarwal, S.; Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105, 1815–1822.

Chang YJ, Ho TY, Wu ML, Hwang SM, Chiou TW, Tsai MS. Amniotic Fluid Stem Cells with Low γ-Interferon Response Showed Behavioral Improvement in Parkinsonism Rat Model. PloS one. 2013 Sep 30;8(9):e76118.

Pereira T, Maurício AC, Luís AL, Gärtner A, Pereira C, Morais DM, Amorim I, Santos JD, Lopes MA, Rodrigues MA, França ML. Biomaterials and stem cell therapies for injuries associated to skeletal muscular tissues. INTECH Open Access Publisher; 2013.

Ganta, C.; Chiyo, D.; Ayuzawa, R.; Rachakatla, R.; Pyle, M.; Andrews, G.; Weiss, M.; Tamura, M.; Troyer, D. Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post-tumor cell inoculation. Cancer Res. 2009, 69, 1815–1820.

Kaka GR, Tiraihi T, Delshad A, Arabkheradmand J, Kazemi H. In vitro differentiation of bone marrow stromal cells into oligodendrocyte-like cells using triiodothyronine as inducer. International Journal of Neuroscience. 2012 Mar 12;122(5):237-47.

Yuan Y, Pan S, Sun Z, Dan Q, Liu J. Brain-derived neurotrophic factor-modified umbilical cord mesenchymal stem cell transplantation improves neurological deficits in rats with traumatic brain injury. International Journal of Neuroscience. 2014 Jul 1;124(7):524-31.

Bigini P, Veglianese P, Andriolo G, Cova L, Grignaschi G, Caron I, Daleno C, Barbera S, Ottolina A, Calzarossa C, Lazzari L. Intracerebroventricular administration of human umbilical cord blood cells delays disease progression in two murine models of motor neuron degeneration. Rejuvenation research. 2011 Dec 1;14(6):623-39.

Xiao YZ, Wang S. Differentiation of Schwann‑like cells from human umbilical cord blood mesenchymal stem cells in vitro. Molecular medicine reports. 2015 Feb 1;11(2):1146-52.

Ayuzawa, R.; Doi, C.; Rachakatla, R.S.; Pyle, M.M.; Maurya, D.K.; Troyer, D.; Tamura, M. Naive human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett. 2009, 280, 31–37.

De Berdt P, Vanacker J, Ucakar B, Elens L, Diogenes A, Leprince JG, Deumens R, des Rieux A. Dental apical papilla as therapy for spinal cord injury. Journal of dental research. 2015 Nov 1;94(11):1575-81.

Gärtner, A., Pereira, T., Armada-da-Silva, P.A.S., Amorim, I., Gomes, R., Ribeiro, J., Franca, M.L., Lopes, C., Porto, B., Sousa, R. and Bombaci, A., 2012. Use of poly (DL-lactide-ε-caprolactone) membranes and mesenchymal stem cells from the Wharton's jelly of the umbilical cord for promoting nerve regeneration in axonotmesis: In vitro and in vivo analysis. Differentiation, 84(5), pp.355-365.

Sousa BR, Parreira RC, Fonseca EA, Amaya MJ, Tonelli FM, Lacerda S, Lalwani P, Santos AK, Gomes KN, Ulrich H, Kihara AH. Human adult stem cells from diverse origins: an overview from multiparametric immunophenotyping to clinical applications. Cytometry Part A. 2014 Jan 1;85(1):43-77.

Hamm RJ, PIKE BR, O'DELL DM, Lyeth BG, JENKINS LW. The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. Journal of neurotrauma. 1994;11(2):187-96.

McElreavey, K.D.; Irvine, A.I.; Ennis, K.T.; McLean, W.H. Isolation, culture and characterisation of fibroblast-like cells derived from the wharton's jelly portion of human umbilical cord. Biochem. Soc. Trans. 1991, 19, 29S.

Braun H, Günther-Kern A, Reymann K, Onteniente B. Neuronal differentiation of human iPS-cells in a rat cortical primary culture. Acta Neurobiol Exp (Wars). 2012 Jan 1;72:219-29.

Wharton, T. Adenographia. Translated by s. Freer. Oxford, UK: Oxford University Press: 1996.

Kita, K.; Gauglitz, G.G.; Phan, T.T.; Herndon, D.N.; Jeschke, M.G. Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev. 2010, 19, 491–502.

La Rocca, G. Connecting the dots: The promises of wharton’s jelly stem cells for tissue repair and regeneration. Open Tissue Eng. Regen. Med. J. 2011, 4, 3–5.

Clausen, T.D.; Mathiesen, E.R.; Hansen, T.; Pedersen, O.; Jensen, D.M.; Lauenborg, J.; Damm, P. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: The role of intrauterine hyperglycemia. Diabetes Care 2008, 31, 340–346.

Chacko, A.W.; Reynolds, S.R.M. Architecture of distended and nondistended human umbilical cord tissues, with special reference to the arteries and veins. Contrib. Embryol. 1954, 35, 135–150.

Shahar A, Nevo Z, Rochkind S, inventors; Nvr Labs Ltd, assignee. Compositions and Methods for Stem Cell Expansion and Differentiation. United States patent application US 11/575,618. 2005 Sep 21.

Kadner, A.; Zund, G.; Maurus, C.; Breymann, C.; Yakarisik, S.; Kadner, G.; Turina, M.;

Hoerstrup, S.P. Human umbilical cord cells for cardiovascular tissue engineering: A comparative study. Eur. J. Cardio-Thorac. Surg. 2004, 25, 635–641.

Baksh, D.; Yao, R.; Tuan, R.S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007, 25, 1384–1392.

Sarugaser, R.; Lickorish, D.; Baksh, D.; Hosseini, M.M.; Davies, J.E. Human umbilical cord perivascular (hucpv) cells: A source of mesenchymal progenitors. Stem Cells 2005, 23, 220–229.

Bongso, A.; Fong, C.Y. The therapeutic potential, challenges and future clinical directions of stem cells from the wharton’s jelly of the human umbilical cord. Stem Cell Rev. 2013, 9, 226–240.

Prasanna, S.J.; Jahnavi, V.S. Wharton’s jelly mesenchymal stem cells as off-the -shelf cellular therapeutics: A closer look into their regenerative and immunomodulatory properties. Open Tissue Eng. Regen. Med. J. 2011, 4, 28–38.

Nanaev, A.K.; Kohnen, G.; Milovanov, A.P.; Domogatsky, S.P.; Kaufmann, P. Stromal differentiation and architecture of the human umbilical cord. Placenta 1997, 18, 53–64.

Wang, X.Y.; Lan, Y.; He, W.Y.; Zhang, L.; Yao, H.Y.; Hou, C.M.; Tong, Y.; Liu, Y.L.;Yang, G.; Liu, X.D.; et al. Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood 2008, 111, 2436–2443.

Kadner, A.; Hoerstrup, S.P.; Tracy, J.; Breymann, C.; Maurus, C.F.; Melnitchouk, S.;Kadner, G.; Zund, G.; Turina, M. Human umbilical cord cells: A new cell source for cardiovascular tissue engineering. Ann. Thorac. Surg. 2002, 74, S1422–S1428.

Pereira T, Gärtner A, Amorim I, Almeida A, Caseiro AR, Armada-da-Silva PA, Amado S, Fregnan F, Varejão AS, Santos JD, Bartolo PJ. Promoting nerve regeneration in a neurotmesis rat model using poly (DL-lactide--caprolactone) membranes and mesenchymal stem cells from the Wharton’s jelly: in vitro and in vivo analysis. BioMed research international. 2014 Jul 10;2014.

Dabelea, D.; Pettitt, D.J. Intrauterine diabetic environment confers risks for type 2 diabetes mellitus and obesity in the offspring, in addition to genetic susceptibility. J. Pediatr. Endocrinol. Metab. 2001, 14, 1085–1091.

Mitchell, K.E.; Weiss, M.L.; Mitchell, B.M.; Martin, P.; Davis, D.; Morales, L.; Helwig, B.;

Beerenstrauch, M.; Abou-Easa, K.; Hildreth, T.; et al. Matrix cells from wharton’s jelly form neurons and glia. Stem Cells 2003, 21, 50–60.

Karahuseyinoglu, S.; Cinar, O.; Kilic, E.; Kara, F.; Akay, G.G.; Demiralp, D.O.; Tukun, A.; Uckan, D.; Can, A. Biology of stem cells in human umbilical cord stroma: In situ and in vitro surveys. Stem Cells 2007, 25, 319–331.

Romanov, Y.A.; Svintsitskaya, V.A.; Smirnov, V.N. Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate msc-like cells from umbilical cord. Stem Cells 2003, 21, 105–110.

Can, A.; Karahuseyinoglu, S. Concise review: Human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 2007, 25, 2886–2895.

Markov, V.; Kusumi, K.; Tadesse, M.G.; William, D.A.; Hall, D.M.; Lounev, V.; Carlton, A.;

Leonard, J.; Cohen, R.I.; Rappaport, E.F.; et al. Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles. Stem Cells Dev. 2007, 16, 53–73.

Baudin, B.; Bruneel, A.; Bosselut, N.; Vaubourdolle, M. A protocol for isolation and culture of human umbilical vein endothelial cells. Nat. Protoc. 2007, 2, 481–485.

Naughton, B.A.; San Roman, J.; Liu, K.; Purchio, A.; Pavelec, R.; Rekettye, L. Cells isolated from wharton’s jelly of the human umbilical cord develop a cartilage phenotype when treated with tgf-β in vitro. FASEB J. 1997, 11, A19.

Jeschke, M.G.; Gauglitz, G.G.; Phan, T.T.; Herndon, D.N.; Kita, K. Umbilical cord lining membrane and wharton’s jelly-derived mesenchymal stem cells: The similarities and differences. Open Tissue Eng. Regen. Med. J. 2011, 4, 21–27.

Purchio, A.F.; Naughton, B.A.; Roman, J.S. Production of Cartilage Tissue Using Cells Isolated from Wharton’s Jelly. U.S. Patent 5,919,702, 1999.

Winther L, Lohse J, Gabs S, Petersen KH, inventors; Dako Denmark A/S, assignee. Immunohistochemistry detection method. United States patent US 9,340,824. 2016 May 17.

Troyer, D.L.; Weiss, M.L. Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 2008, 26, 591–599.

King G, Payne S, Walker F, Murray GI. A highly sensitive detection method for immunohistochemistry using biotinylated tyramine. The Journal of pathology. 1997 Oct 1;183(2):237-41.

Refbacks

  • There are currently no refbacks.