Characterization of Biofilm production in antibiotic resistant Klebsiella pneumonia isolated from different clinical samples in Iraqi hospitals
Abstract
Objective(s): Klebsiella pneumonia is a causative agent of chronic infections leading to increase morbidity and mortality; especially when performing biofilm(1). Therefore, biofilm formation has been linked to the survival of pathogenic bacteria in the hospital environment, leading to susceptible bacterial colonization which creates an important public health problem. Therefore, to characterize biofilm production in local Iraqi K. pneumonia isolated from different clinical samples in Iraqi hospitals using phenotypic biofilm assays including scanning electron microscopy. Material and Methods local isolates were collected from different Iraqi hospitals and re-diagnosed by compact Vitek 2 and genetically by using housekeeping gene (16s rRNA and 23s rRNA 639 bp). Phenotypic detection of biofilm formation among isolates was screened by using microtiter dish assay, twitching motility assay, and scanning electron microscopy (SEM).Results: It was found that 22/24 (91.67%) of isolates could form biofilm (OD≥0.68). Twitching motility test revealed that 20/24 (80.3%) of isolates could move on the M63 medium. Scanning electron microscopy showed 83.3% of K. pneumoniae isolates made biofilm in different stages started with adhesion step and ending with a mushroom like architecture as highly magnification images showed on glass cover slips embedded statically in LB broth. It was interesting that K. pneumoniae S2 demonstrated a dense mat of cells aggregates on cover slips generating different biofilm formation step. Conclusion K. pneumonia could produce biofilm, describing the ability to resist many kinds of antibiotics and rising a concern of disseminating chronic infection among hospitalized patients in many hospitals in Baghdad. Â
Full Text:
PDFReferences
- Ramos P. P., Picão R. C., Almeida L. B. G., and Nicolás M. F. Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genomics 2014; 15(54):1-16.
- Jagessar R. C. and Alleyne R. Antimicrobial potency of the aqueous extract of leaves of Terminalia catappa. Academic Research International 2001; 1(3):362-371.
- Rice L. B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. JID2008; 197:1079-1081.
- Bogner A., Jouneau P. H., Thollet G., Basset D., and Gauthier C. A history of scanning electron microscopy developments: Towards‘‘wet-STEM’’ imaging. Micron 2007; 38: 390–401.
- Holt K. E., Wertheim H., Zadokse N.R., Bakerg S., Whitehouse C.A. Danced D., Jenney A., et al.Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. PNAS 2015: E3574–E3581.
- Akbar A.B. Isolation and Identification of Multi-Drug Resistant Strains of Non- Lactose Fermenting bacteria from Clinical Isolates. Open Journal of Microbiology 2014; 4:115-123.
- Giske C. G., Monnet D. L., Cars O., and Carmeli Y. Clinical and Economic Impact of Common Multidrug-ResistantGram-Negative Bacilli. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY 2008; 52 (3): 813–821.
- Boddicker J. D., Anderson R. A., Jagnow J., and Clegg S. Signature-Tagged Mutagenesis of Klebsiella pneumoniae To Identify Genes That Influence Biofilm Formation on Extracellular Matrix Material. INFECTION AND IMMUNITY 2006;74 (8):4590–4597
- Araujo C. D., Balestrino D., Roth L., Charbonnel N., Forestier C. Quorum sensing affects biofilm formation through lipopolysaccharide synthesis in Klebsiella pneumonia. Research in Microbiology 2010.
- Lee H. W., Koh Y. M., Kim J., Lee J.C., Lee Y.C., Seol S.Y, et al. Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clinical Microbiology and Infection 2008, 14 (1):49-54.
- Clemmer K. M., Bonomo R. A., and Rather P. N. Genetic analysis of surface motility in Acinetobacter baumannii. Microbiology 2011; 157:2534–2544.
- Akers S.K., Mende K., Yu X., Beckius M. L., Aggarwal D., Li P., et al. Biofilms and persistent wound infections in United States military trauma patients: a case–control analysis. BMC Infectious Diseases 2014; 14 (190):1-11.
- Aziz R. A. R. and Al-Jubori S. S. Genetic Elements Responsible for extreme drug resistance (XDR) in Klebsiella pnumoniae var pnumoniae isolated from clinical samples of Iraqi patients. WJPR 2016; 5 (5):1-23.
- O’Toole G. A. Microtiter dish biofilm formation assay. JoVE. 2011; 47:1-2.
- O’Toole, G. A., and Kolter, R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol 1998; 30:295–304.
- Fischer E. R., Hansen B. T., Nair V., Hoyt F. H., and Dorward D. W. Scanning Electron Microscopy. Curr Protoc Microbiol 2012:1-76.
- Ajao A. O, Robinson G., Lee M. S., and Ranke T. D. Comparison of culture media for detection of Acinetobacter baumannii in surveillance cultures of critically-ill patients. Eur J Clin Microbiol Infect Dis.2011; 30(11): 1425–1430.
- Manikam K., Karlowsky J. A., Adam H., and Pang. CHROMagar Orientation Medium Reduces Urine Culture Workload. Journal of Clinical Microbiology2013; 51(2):1179–1183.
- Manchanda V., Sinha Sanchaita S., and Singh N. P. Multidrug resistant Acinetobacter. J Global Infect Dis 2010; 2:291-304.
- Wang B., China S., Knopf D., Gilles M., and Laskin A.. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy. Geophysical Research Abstracts 2016; 18:1-1.
- Elgaml A., Hassan R., Barwa R., and El-Naggar W. Analysis of 16S ribosomal RNA gene segments for the diagnosis of Gram negative pathogenic bacteria isolated from urinary tract infections. African Journal of Microbiology Research 2013; 7(23):2862-2869.
- Srinivasan R, Karaoz U, Volegova M, and MacKichan J. Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens. PLoS ONE 2015; 10(2): e0117617.
- Dong D., Cober E., and Reichter S. S.Impact of therapy and strain type on outcomes in urinary tract infections caused by carbapenem-resistant Klebsiella pneumoniae. J Antimicrob Chemother 2015; 70: 1203–1211.
- Langstraat J., Bohes M., and Clegg S. Type 3 Fimbrial Shaft (MrkA) of Klebsiella pneumoniae, but Not the Fimbrial Adhesin (MrkD), Facilitates Biofilm Formation. Infection and Immunity. INFECTION AND IMMUNITY 2001; 69(9):5805–5812.
- Jagnow J. and Clegg S. Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagencoated surfaces. Microbiology2003;149, 2397–2405.
- Martino P. D., Cafferini N.; Joly B. Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces 2003, 161: 595–603.
- Maldonado N., Silva C., Cecilia M., and Macias M. A simple technique to detect Klebsiella biofilm-forming-strains. Inhibitory potential of Lactobacillus fermentum CRL 1058 whole cells and products 2007; 69(9):5- 12.
- Oleiwi H. and Abid S. Role of Extracted Genomic DNA on Biofilm Formation by Pseudomonas aeruginosa and Klebsiella pneumoniae in vitro. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 2014; 27 (3):1-11.
- Liaqat I., Sumbal F., and Sabri A. N. (2009).Tetracycline and Chloramphenicol Efficiency Against Selected Biofilm Forming Bacteria. Current Microbiology; 59 (2): 212–220.
- Balestrino D., Haagensen J. A. J., Rich C., and Forestier C. Characterization of Type 2 Quorum Sensing in Klebsiella pneumonia and Relationship with Biofilm Formation. JOURNAL OF BACTERIOLOGY 2005; 187 98). pp. 2870–2880.
- Pour N. K., Dusan D. H., and Rokhbakhsh F.Bioflim formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunol Med Microbiol 2011; 62: 328–338.
- Abd El-Baky R. M. Application of Scanning Electron Microscopy for the Morphological Study of Biofilm in Medical Devices, Scanning Electron Microscopy, Dr. Viacheslav Kazmiruk (Ed.). ISBN: 2012; 51:978-953.
- Myszka K. and Czaczyk K. Mechanisms Determining Bacterial Biofilm Resistance to Antimicrobial Factors. Antimicrobial Agents 2012: 213-238.
- Bellifa S., Hassaine H., Balestrino D., Charbonnel N., Lachachi M., Didi W., et al. Evaluation of biofilm formation of Klebsiella pneumoniae isolated from medical devices at the University Hospital of Tlemcen, Algeria. African Journal of Microbiology Research 2013; 7(49):5558-5564.
- Jamal M., Hussain T., and Andleeb S. Inhibition of clinical multi-drug resistant Klebsiella pneumoniae biofilm by Siphoviridae bacteriophage Z. Sci Lett 2015; 3(3):122-126.
- Qi H. L., Zhang C., and Song H. Relationship between Antibiotic Resistance, Biofilm Formation, and Biofilm-Specific Resistance in Acinetobacter baumannii. Frontiers in Microbiology 2016; 7:1-10.
- Bala M., Gupta S., Aggarwal P., and Manhas A. Biofilm producing multidrug resistant Acinetobacter species from a tertiary care hospital: a therapeutic challenge. IJRMS 2017; 4(7):1-14.
Refbacks
- There are currently no refbacks.