Phytochemical Analysis and In Vitro Cytotoxicity of n-Hexane Extract of Kaempferia pandurata and its Nanoparticle to Breast Cancer MCF-7 Cells

Fadilah Fadilah

Abstract

Background: Finger root (Kaempferia pandurata) is a medicinal herb which has shown anticancer activity as potential targeted-therapy towards estrogen receptor positive breast cancer. Objective: This research was conducted to analyze the phytochemical contents of n-hexane extract of Kaempferia pandurata and its nanoparticle to the growth of estrogen positive breast cancer MCF-7 cells. Methods: Kaempferia pandurata rhizome was extracted in n-hexane, and its phytochemical contents was analyzed by simple phytochemical test and thin layer chromatography. Nanoparticle was then synthesized from n-hexane extract of Kaempferia pandurata. Finally, the n-hexane extract of Kaempferia pandurata and its nanoparticle were then tested using MTT Assay to MCF-7 cells in order to determine their inhibition rate and IC50. Results:. The extraction of Kaempferia pandurata rhizome in n-hexane extract was conducted successfully. Through simple phytochemical testing, n-hexane extract of Kaempferia pandurata contained flavonoids, triterpenoids, and tannins. Thin layer chromatography using non-polar eluent (n-hexane : ethyl acetate = 5 :1) showed eight spots with Rf values of 0,12; 0,18; 0,23; 0,29; 0,41; 0,55; 0,62; 0,80. MTT assay resulted in IC50 value of 94.387 ± 11.667 μg/mL and 31,298 ± 0,242 μg/mL for n-hexane extract of Kaempferia pandurata and its nanoparticle respectively. Discussion: The phytochemical contents of n-hexane extract of Kaempferia pandurata (flavonoid, triterpenoid, tannin) was shown to have anticancer activities on breast cancer cells n-hexane extract of Kaempferia pandurata and its nanoparticle has moderately active anticancer activities towards estrogen positive breast cancer MCF-7 cells. Nanoparticle enhances n-hexane extract of Kaempferia pandurata’s entry to cancer cells. Conclusion: N-hexane extract of Kaempferia pandurata and its nanoparticle can be a potenial anticancer agent towards estrogen positive breast cancer.

Full Text:

PDF

References

GLOBOCAN 2012. Breast Cancer: Estimated Incidence, Mortality and Prevalence Worldwide in 2012 [Internet]. France: IARC; 2019 [cited 2019 Jan 17]. Available from: http://globocan.iarc.fr/old/FactSheets/cancers/breast-new.asp

Alvarez, R. H., Cortes, J., Falzon, M., Gandy, M., Gianni, L., Harbeck, N., & Piccart, M. Handbook of HER2- Targeted Agents in Breast Cancer, 2nd ed. Switzerland: Springer International Publishing; 2016.

Tao Z, Shi A, Lu C, Song T, Zhang Z, Zhao J. Breast Cancer: Epidemiology and Etiology. Cell Biochem Biophys. 2015 Jun;72(2):333-8. doi: 10.1007/s12013-014-0459-6.

Mitri Z, Constantine T, Regan RO. The HER2 Receptor in Breast Cancer: Pathophysiology, Clinical Use, and New Advances in Therapy. Chemotherapy Reearch and Practice. 2012; 743193:1-7.

Manavathi B, Dey O, Gajulapalli VNR, Bhatia RS, Bugide S, Kumar R. Derailed Estrogen Signaling and Breast Cancer: An Authentic Couple. Endocr Rev. 2013 Feb; 34(1): 1–32. doi: 10.1210/er.2011-1057.

Osborne CK, Schiff R, Fuqua SA, Shou J. Estrogen receptor: current understanding of its activation and modulation. Clin Cancer Res. 2001 Dec;7(12 Suppl):4338s-4342s; discussion 4411s-4412s.

Lumachi F, Brunello A, Maruzzo M, Basso U, Basso SMM. Treatment of Estrogen Receptor-Positive Breast Cancer. Current Medicinal Chemistry. 2013; 20:596-604.

Engel RH, Kaklamani VG. HER2-positive breast cancer: current and future treatment strategies. Drugs. 2007; 67(9): 1329–1341.

Poerwono H, Sasaki S, Hattori Y, Higashiyama K. Efficient microwave-assisted prenylation of pinostrobin and biological evaluation of its derivatives as antitumor agents. Bioorganic & Medicinal Chemistry Letters. 2010 Feb;20(7):2086-2089.

Fahey JW, Stephenson KK. Pinostrobin from honey and Thai ginger (Boesenbergia pandurata): a potent flavonoid inducer of mammalian phase 2 chemoprotective and antioxidant enzymes. J Agric Food Chem. 2002 Dec 4;50(25):7472-6.

Panthong A, Kanjanapothi D, Tuntiwachwuttikul P, Pancharoen O, Reutrakul V. Antiinflammatory activity of flavonoids. Phytomedicine. 1994 Sep;1(2):141-4. doi: https://doi.org/10.1016/S0944-7113(11)80032-2.

Melliou E, Chinou J. Chemical analysis and antimicrobial activity of Greek propolis. Planta Med. 2004; 70: 515–9.

Yehelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006 Aug;7(8):657-67.

Hou J, Yu X, Shen Y, Shi Y, Su C, Zhao L. Triphenyl Phosphine-Functionalized Chitosan Nanoparticles Enhanced Antitumor Efficiency Through Targeted Delivery of Doxorubicin to Mitochondria. Nanoscale Research Letters. 2017;12:158.

Kumar N, Patel AN, Kumari N, Kumar A. A review on chitosan nanoparticles for cancer treatment. International Journal of Nanomaterials and Biostructures. 2014; 4(4):63-65.

Pratiwi E. Aktivitas Antioksidan Ekstrak dan Fraksi Aktif Temu Kunci (Boesenbergia Pandurata Roxb.) [skripsi]. Bogor: Departemen Kimia Institut Pertanian Bogor; 2009.

Handayani S, Mursiti S, Wijayati N. Uji Aktivitas Antibakteri Senyawa Flavonoid dari Rimpang Temu Kunci (Kaempferia pandurata Roxb.) terhadap Streptococcus mutans. Indo J Chem Sci. 2018;7(2):146-152.

Montes I, Lai C, Sanabria D. Like Dissolves Like: A Guided Inquiry Experiment for Organic Chemistry. Journal of Chemical Education. 2003;80(4):447.

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.

Kirana C, Jones, GP, Record IR, McIntosh,GH. Anticancer properties of panduratin A isolated from Boesenbergia pandurata (Zingiberaceae). Journal of Natural Medicines 2007;61:131-7.

Bishayee A, Ahmed S, Brankov N, Perloff M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front Biosci. 2011 Jan 1; 16: 980-996.

Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: Structure, activity, and biological fate. Asian Journal of Pharmaceutical Sciences. 2018 Jan;12(1):12-23.

Serrano J, Pimia RP, Dauer A, Aura AM, Calixto SF. Tannins: current knowledge of food sources, intake, bioavailability, and biological effects. Mol Nutr Food Res. 2009 Sep;53 Suppl 2:S310-29.

Putra AY, Chahyadi A, Yaman E. Production of Panduratin A, Cardamomin, and Sitosterol Using Cell Cultures of Fingerroot (Boesenbergia pandurata (Roxb.) Schlecter)). Biosciences Biotechnology Research Asia. 2014 Apr; 11(1):43-52.

Depkes RI. Farmakope Herbal Indonesia, 1st ed. Jakarta: Departemen Kesehatan RI; 2008.

Atjanasuppat K, Wongkham W, Meepowpan P, Kittakoop P, Sobhon P, Bartlett A, Whitfield PJ. In vitro screening for anthelmintic and antitumour activity of ethnomedicinal plants from Thailand.J. Ethnopharmacol. 2009;123:475–482.

Nurrachma MY, Lintangsari G, Tika LN, Luthfiananda B, Adiningsih W, Hermawan A. Ethanolic Extract of Fingerroot (Boesenbergia pandurata) Inhibits Aldehyde Dehydrogenase in 4T1 Breast Cancer Cells. CCRC Farmasi UGM. 2017; 10(2): 45-54.

Fadilah F, Edina BC, Rahmawati RA, Wiyono L, Erlina L, Paramita RI, Tedjo A. Molecular Dynamic of Pinostrobin and Pinocembrin from Kaempferia pandurata Roxb. towards Estrogen Receptor Positive (ESR) and Estrogen Receptor Negative (VEGFR) of Breast Cancer. Asian Journal of Pharmaceutics. (2018) (Suppl); 12 (4):1473.

Contini C, Schneemilch M, Gaisford S, Quirke N. Nanoparticle-membrane interactions. Journal of Experimental Nanoscience. 2018;13(1):62-81.

Refbacks

  • There are currently no refbacks.