Potential Of Biological Activities From Chemical Compounds Of Nigella Sativa As Anti-Osteoporosis, An Insilico Study

Mohammad Kuntadi Syamsul Hidayat

Abstract

Objective: The objective of the study was to investigate the potential of biological activities from chemical compounds of Nigella sativa (NS) as anti-osteoporosis using the computational chemistry insilico study.

 

Methods: Database search from KnapSack was conducted to find out NS active compounds. Next, explore using the PASS Server database to find out compounds that have anti-osteoporosis potential. Exploration with STITCH to analyze the interaction of NS active compounds with cell proteins related to anti-osteoporosis, then docking using PyRx to determine the bond affinity that occurs between NS active compounds and cell proteins.

 

Result: There were 36 active NS compounds, 28 of which had anti-osteoporosis potential. One active compound that has a probability to be active value (Pa)> 0.7 and 21 active compounds that have Pa: 0.3 - 0.7. Found 6 active compounds that have interactions and play a major role in the anti-osteoporosis process. With the docking process, binding affinity longifolene is obtained with estrogen receptors: -8.2 kcal / mol, compared to Bazedoxifene -9.6 kcal / mol

 

Conclusion: From the study of insilico, Nigella sativa has the potential as an anti-osteoporosis

 

Keywords : Osteoporosis, Nigella sativa, insilico, anti-osteoporosis

Full Text:

PDF

References

Jeremiah, M. P., Unwin, B. H., Greenawald, M. H., & Casiano, V. E. 2014. Diagnosis and management of osteoporosis. Am Fam Physician, 92(4), 261–268. https://doi.org/10.1093/invait/ins123

Cosman, F., de Beur, S. J., LeBoff, M. S., Lewiecki, E. M., Tanner, B., Randall, S., & Lindsay, R. 2014. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporosis International, 25(10), 2359–2381. https://doi.org/10.1007/s00198-014-2794-2

Akkawi, I., & Zmerly, H. 2018. Osteoporosis: Current concepts. Joints, 6(2), 122–127. https://doi.org/10.1055/s-0038-1660790

Davis Susan , Irene Lambrinoudaki, Maryann Lumsden, G. D. M., & Lubna Pal5, Margaret Rees6, N. S. and T. S. 2015. Menopause. Medical Clinics of North America, 99(3), 521–534. https://doi.org/10.1016/j.mcna.2015.01.006

Okman-Kilic, T. 2015. Estrogen Deficiency and Osteoporosis. In Y. Dionyssiotis (Ed.), Advances in Osteoporosis (pp. 7–19). World’s largest Science, Technology & Medicine Open Access book publisher. https://doi.org/10.5772/58645

Das, S., & Crockett, J. C. (2013). Osteoporosis - a current view of pharmacological prevention and treatment. Drug Design, Development and Therapy, 7, 435–448. https://doi.org/10.2147/DDDT.S31504

Tan, E. M., Li, L., Indran, I. R., Chew, N., & Yong, E. L. (2017). TRAF6 Mediates Suppression of Osteoclastogenesis and Prevention of Ovariectomy-Induced Bone Loss by a Novel Prenylflavonoid. Journal of Bone and Mineral Research, 32(4), 846–860. https://doi.org/10.1002/jbmr.3031

Alta’ee MH, Mufeed J. Ewadh, H. K. Z. (2006). Hormonal Contents of Two Types of Black Seed Oil : Comparative Study. Medical Journal of Babylon –, 3(1–2), 17–21.

Parhizkar, S., Latiff, L. A., Rahman, S. A., & Aziz, M. (2011a). Evaluation of estrogen-like activity of Nigella sativa in ovariectomized rats Evaluation of estrogen-like activity of Nigella sativa in ovariectomized rats. African Journal of Pharmacy and Pharmacology, (April 2017). https://doi.org/10.5897/AJPP10.257

Parhizkar, S., Latiff, L. A., Rahman, S. A., Aziz, M., & Parichehr, H. (2011b). Assessing estrogenic activity of Nigella sativa in ovariectomized rats using vaginal cornification assay, 5(February), 137–142. https://doi.org/10.5897/AJPP10.276

Parhizkar, S., Latiff, L. A., & Parsa, A. (2016). Effect of Nigella sativa on reproductive system in experimental menopause rat model. African Journal of Pharmacy and Pharmacology, 6(1), 95–103.

Nader, M. A., El-agamy, D. S., & Suddek, G. M. (2010). Protective Effects of Propolis and Thymoquinone on Development of Atherosclerosis in Cholesterol-Fed Rabbits. Arch Pharm Res, 33(4), 637–643. https://doi.org/10.1007/s12272-010-0420-1

Lee, Y. J., Hong, J. Y., Kim, S. C., Joo, J. K., Na, Y. J., & Lee, K. S. (2015). The association between oxidative stress and bone mineral density according to menopausal status of Korean women, 58(1), 46–52.

Nazrun Shuid, A., Mohamed, N., Mohamed, I. N., Othman, F., Suhaimi, F., Suhana, E., Soelaiman, I. N. (2012). Nigella sativa : A Potential Antiosteoporotic Agent. Evidence-Based Complementary and Alternative Medicine, 2012. https://doi.org/10.1155/2012/696230

Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 2007;36 (Database issue):D684-8.

Trott, O., & Olson, A. J. (2010). AutoDockVina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 January 30; 31(2): 455–461. doi:10.1002/jcc.21334

Laskowski, R. A., &Swindells, M. B. (2011). LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. doi:10.1021/ci200227u

Ferreira, L., dos Santos, R., Oliva, G., &Andricopulo, A. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20(7), 13384–13421. doi:10.3390/molecules200713384

Kim, W. S., Kim, H. J., Lee, Z. H., Lee, Y., & Kim, H. H. 2013. Apolipoprotein E inhibits osteoclast differentiation via regulation of c-Fos, NFATc1 and NF-κB. Experimental Cell Research, 319(4), 436–446. https://doi.org/10.1016/j.yexcr.2012.12.004

Pietschmann, P., Mechtcheriakova, D., Meshcheryakova, A., Föger-, U., & Ellinger, I. 2016. Europe PMC Funders Group Immunology of Osteoporosis : A Mini-Review. Gerontology, 62(2), 128–137. https://doi.org/10.1159/000431091.Immunology

Tan, E. M., Li, L., Indran, I. R., Chew, N., & Yong, E. L. 2017. TRAF6 Mediates Suppression of Osteoclastogenesis and Prevention of Ovariectomy-Induced Bone Loss by a Novel Prenylflavonoid. Journal of Bone and Mineral Research, 32(4), 846–860. https://doi.org/10.1002/jbmr.3031

Hattersley G, Chambers TJ. Calcitonin receptors as markers for osteoclastic differentiation: correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures. Endocrinology. 1989 Sep;125(3):1606-12.

Khalid, A. B., & Krum, S. A. (2016). Estrogen receptors alpha and beta in bone. Bone, 87, 130–135. doi:10.1016/j.bone.2016.03.016

Refbacks

  • There are currently no refbacks.