EXPLORING THE ANTI-PARKINSONIAN POTENTIAL OF CASSIA TORA ETHANOLIC LEAVES EXTRACT IN ANIMAL MODELS

Bandana Mishra, Jassaswi Ray, S.K. Prusty, Rajashree Mohanty, Anup Ku Patra

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor impairments resulting from the loss of dopaminergic neurons. Current treatments provide symptomatic relief but do not halt disease progression. In this study, we investigated the potential therapeutic effects of Cassia tora ethanolic leaves extract (CTELE) on PD using animal models. CTELE, known for its rich bioactive compounds, was administered orally to PD-induced animals, and their behavioral responses were assessed using standard motor function tests. Additionally, histopathological examination and biochemical assays were performed to evaluate the neuroprotective mechanisms of CTELE. Our results demonstrate that CTELE treatment ameliorated motor deficits in PD animal models, as evidenced by improved locomotor activity and coordination. Furthermore, histological analysis revealed a preservation of dopaminergic neurons in the substantia nigra pars compacta of CTELE-treated animals compared to untreated controls. Biochemical analysis showed a reduction in oxidative stress markers and an increase in antioxidant enzyme activity in CTELE-treated animals, suggesting its potential neuroprotective effects. These findings suggest that CTELE may hold promise as a natural therapeutic agent for PD and warrant further investigation into its underlying mechanisms of action and clinical efficacy.
Keywords: Cassia tora leave, Parkinson’s disease.

Full Text:

PDF

References

Beitz JM (2014) Parkinson disease: A review, Front Biosci (Schol Ed). 6(1):65-74. doi: 10.2741/s415. PMID: 24389262.

Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinsons disease: Risk factors and prevention. Lancet Neurol. 15(12):1257-1272. doi: 10.1016/S1474-4422(16)30230-7. PMID: 27751556.

Belvisi D, Pellicciari R, Fabbrini A, Costanzo M, Pietracupa S, De Lucia M, Modugno N, Magrinelli F, Dallocchio C, Ercoli T, Terravecchia C, Nicoletti A, Solla P, Fabbrini G, Tinazzi M, Berardelli A, Defazio G. (2020) Risk factors of Parkinson disease: Simultaneous assessment, interactions, and etiologic subtypes. Neurology, 3;95(18):e2500-e2508. doi: 10.1212/WNL.0000000000010813.

Tysnes OB, Storstein A. (2017) Epidemiology of Parkinsons disease, J Neural Transm (Vienna), 124(8):901-905. doi: 10.1007/s00702-017-1686-y.

Marras C, Beck JC, Bower JH (2018) Prevalence of parkinson’s disease across North America, NPJ Parkinsons Disease, 4:21. https://doi.org/10.1038/s41531-018-0058-0.

Orozco JL, Valderrama-Chaparro JA, Pinilla-Monsalve GD, Molina-Echeverry MI, Pérez Castaño AM, Ariza-Araújo Y, Prada SI, Takeuchi Y (2020) Parkinsons disease prevalence, age distribution and staging in Colombia, Neurol Int. 12(1):8401. doi: 10.4081/ni.2020.8401

Simon DK, Tanner CM, Brundin P (2020) Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 36(1):1-12. doi: 10.1016/j.cger.2019.08.002. .

Bloem BR, Okun MS, Klein C (2021) Parkinson s disease, Lancet. 397 (10291):2284-2303. doi:10.1016/S0140-6736(21)00218-X.

Gökçal E, Gür VE, Selvitop R, Babacan Yildiz G, Asil T (2017) Motor and non-motor symptoms in parkinsons disease: Effects on quality of life, 54 (2):143-148. doi: 10.5152/npa.2016.12758.

Hubble JP, Cao T, Hassanein RE, Neuberger JS, Koller WC (1993) Risk factors for Parkinsons disease. Neurology, 43(9):1693-7. doi: 10.1212/wnl.43.9.1693.

Gao C, Liu J, Tan Y, Chen S (2020) Freezing of gait in parkinsons disease: Pathophysiology, risk factors and treatments. Transl Neurodegener. 9:12. doi: 10.1186/s40035-020-00191-5.

Cerri S, Mus L, Blandini F (2019) Parkinsos Disease in Women and Men: Whats the Difference? J Parkinsons Disease. 9(3):501-515. doi: 10.3233/JPD-191683.

Murakami H, Shiraishi T, Umehara T, Omoto S, Iguchi Y (2023) Recent Advances in Drug Therapy for Parkinsons Disease. Intern Med. 62(1):33-42. doi: 10.2169/internalmedicine.8940-21.

Stoker TB, Barker RA (2020) Recent developments in the treatment of Parkinsons Disease. F1000Res. 9: F1000 Faculty Rev-862. doi: 10.12688/f1000research.25634.1.

Kumar RS, Narasingappa RB, Joshi CG, Girish TK, Prasada Rao UJ, Danagoudar A (2017) Evaluation of Cassia tora Linn. against Oxidative Stress-induced DNA and Cell Membrane Damage. J Pharm Bioallied Sci. 9(1):33-43. doi: 10.4103/0975-7406.206215.

Kumar V, Singh R, Mahdi F, Mahdi AA, Singh RK (2017) Experimental validation of antidiabetic and antioxidant potential of cassia tora (L.): An indigenous medicinal plant. Indian J Clin Biochem., 32(3):323-328. doi: 10.1007/s12291-016-0608-3.

Kumar V, Roy BK (2018) Population authentication of the traditional medicinal plant Cassia tora L. based on ISSR markers and FTIR analysis. Sci Rep. 8(1):10714. doi: 10.1038/s41598-018-29114-1.

Ravi SK, Narasingappa RB, Joshi CG, Girish TK, Vincent B (2018) Neuroprotective effects of Cassia tora against paraquat-induced neurodegeneration: relevance for Parkinson's disease. Nat Prod Res. 32(12):1476-1480. doi: 10.1080/14786419.2017.1353504.

Dhanasekaran M, Ignacimuthu S, Agastian P (2009) Potential hepatoprotective activity of ononitol monohydrate isolated from Cassia tora L. on carbon tetrachloride induced hepatotoxicity in wistar rats. Phytomedicine.

16(9):891-5. doi: 10.1016/j.phymed.2009.02.006.

Capuron L, Miller AH (2011) Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 130: 226-238.

Suryawanshi CP, Patil VR, Chaudhari RY, Kale MK, Firake SD, Pimprikar RB, Patil MD, Yeshwante SB, Saindanem DS (2009) Antiparkinsonian Effect of Cassia tora on Oxotremorine Induced Parkinson Methodology, Research J. Pharmacology and Pharmacodynamics. 1(1): 35-38.

Kim SK, Ban JY, Kang H, Park SI (2023) Anti-apoptotic effect of chrysophanol isolated from cassia tora seed extract on blue-light-induced A2E-loaded human retinal pigment epithelial cells. Int J Mol Sci. 24(7):6676. doi: 10.3390/ijms24076676.

Campos FL, Carvalho MM, Cristovão AC, Je G, Baltazar G, Salgado AJ, Kim YS, Sousa N (2013) Rodent models of Parkinsons disease: beyond the motor symptomatology, Front Behav Neurosci. 7:175. doi: 10.3389/fnbeh.2013.00175.

Rozas G, Labandeira García JL (1997) Drug-free evaluation of rat models of parkinsonism and nigral grafts using a new automated rotarod test, Brain Res., 749(2):188-99. doi: 10.1016/S0006- 8993(96)01162-6.

Magen I, Fleming SM, Zhu C, Garcia EC, Cardiff KM, Dinh D, De La Rosa K, Sanchez M, Torres ER, Masliah E, Jentsch JD, Chesselet MF (2012) Cognitive deficits in a mouse model of pre-manifest Parkinsons disease. Eur J Neurosci. 35(6):870-82. doi: 10.1111/j.1460-9568.2012.08012.x.

Kraeuter AK, Guest PC, Sarnyai Z (2019) The Y-Maze for assessment of spatial working and reference memory in mice, Methods Mol Biol. 1916:105-111. doi: 10.1007/978-1-4939-8994-2_10.

Lloyd JR, Silverman ER, Kugler JL, Cooper JJ (2020) Electroconvulsive therapy for patients with catatonia: current perspectives, Neuropsychiatr Dis Treat. 16:2191-2208. doi: 10.2147/NDT.S231573.

Sienaert P, Dhossche DM, Vancampfort D, De Hert M, Gazdag G (2014) A clinical review of the treatment of catatonia, Front Psychiatry, 5:181. doi: 10.3389/fpsyt.2014.00181.

Refbacks

  • There are currently no refbacks.