A Review on Electrospun Nanofibres for Drug Delivery

Kamala Kumari


Electrospinning is most widely used technique for fabrication of nanofibres. It is cost effective, simple and versatile process. The resulting nanofibres possess unique properties such as a high surface-area-to-volume and aspect ratio, low density, and high pore volume. These properties make the nanomaterials more advantageous than conventional materials in energy harvesting, conversion, and storage devices. There are different aspects of electrospinning, but the current discussion is based on the use of electrospun fibrous matrices for drug delivery. The article explains about all the available approaches to incorporate drugs onto or within electrospun fibrous matrices, along with their release mechanisms and about the applications of such drug carrying fibrous matrices for regeneration of various tissues, such as neural, vascular, cardiac, skin, and bone.

Full Text:



Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009 Jun 26; 324 (5935):1673-7.

Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature biotechnology. 2005 Jan; 23(1):47-55.

Fu X, Xu M, Liu J, Qi Y, Li S, Wang H. Regulation of migratory activity of human keratinocytes by topography of multiscale collagen-containing nanofibrous matrices. Biomaterials. 2014 Feb 1;35(5):1496-506.

Chen SC, Huang XB, Cai XM, Lu J, Yuan J, Shen J. The influence of fiber diameter of electrospun poly (lactic acid) on drug delivery. Fibers and Polymers. 2012 Nov 1; 13(9):1120-5.

Huang C, Fu X, Liu J, Qi Y, Li S, Wang H. The involvement of integrin β1 signaling in the migration and myofibroblastic differentiation of skin fibroblasts on anisotropic collagen-containing nanofibers. Biomaterials. 2012 Feb 1; 33(6):1791-800.

Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Advanced drug delivery reviews. 2007 Dec 10;59(14):1413-33.

Jiang Q, Hasan SK. Phase Separated Fibrous Structures: Mechanism Study and Applications. InLightweight Materials from Biopolymers and Biofibers 2014 (pp. 127-141). American Chemical Society.

Gelain F, Bottai D, Vescovi A, Zhang S. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PloS one. 2006;1(1).

Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002 Mar 11;3(2):232-8.

Telemeco TA, Ayres C, Bowlin GL, Wnek GE, Boland ED, Cohen N, Baumgarten CM, Mathews J, Simpson DG. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta biomaterialia. 2005 Jul 1;1(4):377-85.

Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue engineering. 2006 May 1;12(5):1197-211.

Ashammakhi N, Ndreu A, Piras AM, Nikkola L, Sindelar T, Ylikauppila H, Harlin A, Gomes ME, Neves NM, Chiellini E, Chiellini F. Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering. Journal of nanoscience and nanotechnology. 2007 Mar 1;7(3):862-82.

Kai D, Liow SS, Loh XJ. Biodegradable polymers for electrospinning: towards biomedical applications. Materials Science and Engineering: C. 2014 Dec 1;45:659-70.

Taylor GI. Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1969 Dec 2;313(1515):453-75.

Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008 May 1;29(13):1989-2006.

Yarin AL, Koombhongse S, Reneker DH. Bending instability in electrospinning of nanofibers. Journal of applied physics. 2001 Mar 1;89(5):3018-26.

Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. InConference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting 1993 Oct 2 (pp. 1698-1703). IEEE.

Yang Q, Li Z, Hong Y, Zhao Y, Qiu S, Wang CE, Wei Y. Influence of solvents on the formation of ultrathin uniform poly (vinyl pyrrolidone) nanofibers with electrospinning. Journal of Polymer Science Part B: Polymer Physics. 2004 Oct 15;42(20):3721-6.

Shin YM, Hohman MM, Brenner MP, Rutledge GC. Electrospinning: A whipping fluid jet generates submicron polymer fibers. Applied physics letters. 2001 Feb 19;78(8):1149-51.

Jaeger R, Bergshoef MM, Batlle CM, Schönherr H, Julius Vancso G. Electrospinning of ultra‐thin polymer fibers. InMacromolecular symposia 1998 Feb (Vol. 127, No. 1, pp. 141-150). Basel: Hüthig & Wepf Verlag.

Gupta B, Revagade N, Hilborn J. Poly (lactic acid) fiber: An overview. Progress in polymer science. 2007 Apr 1;32(4):455-82.

Cicero JA, Dorgan JR, Garrett J, Runt J, Lin JS. Effects of molecular architecture on two‐step, melt‐spun poly (lactic acid) fibers. Journal of Applied Polymer Science. 2002 Dec 9;86(11):2839-46.

Kim MS, Kim JC, Kim YH. Effects of take‐up speed on the structure and properties of melt‐spun poly (L‐lactic acid) fibers. Polymers for Advanced Technologies. 2008 Jul;19(7):748-55.

Postema AR, Luiten AH, Pennings AJ. High‐strength poly (L‐lactide) fibers by a dry‐spinning/hot‐drawing process. I. Influence of the ambient temperature on the dry‐spinning process. Journal of applied polymer science. 1990 Mar 20;39(6):1265-74.

Persano L, Camposeo A, Tekmen C, Pisignano D. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromolecular Materials and Engineering. 2013 May;298(5):504-20.

Tan EP, Ng SY, Lim CT. Tensile testing of a single ultrafine polymeric fiber. Biomaterials. 2005 May 1;26(13):1453-6.

Liu J, Shen Z, Lee SH, Marquez M, McHugh MA. Electrospinning in compressed carbon dioxide: Hollow or open-cell fiber formation with a single nozzle configuration. The Journal of Supercritical Fluids. 2010 Jun 1;53(1-3):142-50.

Stitzel J, Liu J, Lee SJ, Komura M, Berry J, Soker S, Lim G, Van Dyke M, Czerw R, Yoo JJ, Atala A. Controlled fabrication of a biological vascular substitute. Biomaterials. 2006 Mar 1;27(7):1088-94.

Yu DG, Shen XX, Branford-White C, White K, Zhu LM, Bligh SA. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology. 2009 Jan 9;20(5):055104.

Ignatious F, Sun L, Lee CP, Baldoni J. Electrospun nanofibers in oral drug delivery. Pharmaceutical research. 2010 Apr 1;27(4):576-88.

Lin X, Tang D, Cui W, Cheng Y. Controllable drug release of electrospun thermoresponsive poly (N‐isopropylacrylamide)/poly (2‐acrylamido‐2‐methylpropanesulfonic acid) nanofibers. Journal of Biomedical Materials Research Part A. 2012 Jul;100(7):1839-45.

Nagy ZK, Balogh A, Drávavölgyi G, Ferguson J, Pataki H, Vajna B, Marosi G. Solvent-free melt electrospinning for preparation of fast dissolving drug delivery system and comparison with solvent-based electrospun and melt extruded systems. Journal of pharmaceutical sciences. 2013 Feb 1;102(2):508-17.

Balogh A, Drávavölgyi G, Faragó K, Farkas A, Vigh T, Sóti PL, Wagner I, Madarász J, Pataki H, Marosi G, Nagy ZK. Plasticized drug‐loaded melt electrospun polymer mats: characterization, thermal degradation, and release kinetics. Journal of pharmaceutical sciences. 2014 Apr 1;103(4):1278-87.

Seif S, Franzen L, Windbergs M. Overcoming drug crystallization in electrospun fibers–Elucidating key parameters and developing strategies for drug delivery. International journal of pharmaceutics. 2015 Jan 15;478(1):390-7.

Zeng J, Yang L, Liang Q, Zhang X, Guan H, Xu X, Chen X, Jing X. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. Journal of controlled release. 2005 Jun 20;105(1-2):43-51.

Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, du Toit LC, Ndesendo VM. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials. 2013;2013.

Zhang Z, Hu J, Ma PX. Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Advanced drug delivery reviews. 2012 Sep 1;64(12):1129-41.

Yoo HS, Kim TG, Park TG. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced drug delivery reviews. 2009 Oct 5;61(12):1033-42.

Bölgen N, Vargel I, Korkusuz P, Menceloğlu YZ, Pişkin E. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2007 May;81(2):530-43.

Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical–biology applications. Chemical reviews. 2013 Jul 10;113(7):4905-79.

Liu SQ, Ee PL, Ke CY, Hedrick JL, Yang YY. Biodegradable poly (ethylene glycol)–peptide hydrogels with well-defined structure and properties for cell delivery. Biomaterials. 2009 Mar 1;30(8):1453-61.

Jiang X, Lok MC, Hennink WE. Degradable-brushed pHEMA–pDMAEMA synthesized via ATRP and click chemistry for gene delivery. Bioconjugate chemistry. 2007 Nov 21;18(6):2077-84.

Tang H, Zhang D. General route toward side-chain-functionalized α-helical polypeptides. Biomacromolecules. 2010 Jun 14;11(6):1585-92.

Li M, De P, Gondi SR, Sumerlin BS. Responsive polymer‐protein bioconjugates prepared by RAFT polymerization and copper‐catalyzed azide‐alkyne click chemistry. Macromolecular Rapid Communications. 2008 Jul 1;29(12‐13):1172-6.

Wang R, Chen W, Meng F, Cheng R, Deng C, Feijen J, Zhong Z. Unprecedented access to functional biodegradable polymers and coatings. Macromolecules. 2011 Aug 9;44(15):6009-16.

Lu FZ, Xiong XY, Li ZC, Du FS, Zhang BY, Li FM. A convenient method for the synthesis of amine-terminated poly (ethylene oxide) and poly (ε-caprolactone). Bioconjugate chemistry. 2002 Sep 18;13(5):1159-62.

Hamley IW. PEG–peptide conjugates. Biomacromolecules. 2014 May 12;15(5):1543-59.

Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnology progress. 2009 Nov;25(6):1539-60.

Venugopal J, Vadgama P, Kumar TS, Ramakrishna S. Biocomposite nanofibres and osteoblasts for bone tissue engineering. Nanotechnology. 2007 Jan 9;18(5):055101.

Kosmider K, Scott J. Polymeric nanofibres exhibit an enhanced air filtration performance. Filtration & Separation. 2002 Jul 1;39(6):20-2.

Gibson P, Schreuder-Gibson H, Rivin D. Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2001 Aug 31;187:469-81.

Ma Z, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue engineering. 2005 Jan 1;11(1-2):101-9.

Wang H, Ding J, Lee B, Wang X, Lin T. Polypyrrole-coated electrospun nanofibre membranes for recovery of Au (III) from aqueous solution. Journal of Membrane Science. 2007 Oct 15;303(1-2):119-25.

Kelleher CM, Vacanti JP. Engineering extracellular matrix through nanotechnology. Journal of the Royal Society Interface. 2010 Dec 6;7(suppl_6):S717-29.

Ki CS, Gang EH, Um IC, Park YH. Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. Journal of Membrane Science. 2007 Sep 15;302(1-2):20-6.

Marler JJ, Upton J, Langer R, Vacanti JP. Transplantation of cells in matrices for tissue regeneration. Advanced drug delivery reviews. 1998 Aug 3;33(1-2):165-82.

Min BM, You Y, Kim JM, Lee SJ, Park WH. Formation of nanostructured poly (lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts. Carbohydrate Polymers. 2004 Sep 13;57(3):285-92.

Liu SJ, Kau YC, Chou CY, Chen JK, Wu RC, Yeh WL. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. Journal of Membrane Science. 2010 Jun 15;355(1-2):53-9.

Kontogiannopoulos KN, Assimopoulou AN, Tsivintzelis I, Panayiotou C, Papageorgiou VP. Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications. International journal of pharmaceutics. 2011 May 16;409(1-2):216-28.

Rnjak-Kovacina J, Wise SG, Li Z, Maitz PK, Young CJ, Wang Y, Weiss AS. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials. 2011 Oct 1;32(28):6729-36.

Chen JP, Chang GY, Chen JK. Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and surfaces a: physicochemical and engineering aspects. 2008 Feb 1;313:183-8.

Natu MV, de Sousa HC, Gil MH. Effects of drug solubility, state and loading on controlled release in bicomponent electrospun fibers. International journal of pharmaceutics. 2010 Sep 15;397(1-2):50-8.

Elsner JJ, Zilberman M. Novel antibiotic-eluting wound dressings: An in vitro study and engineering aspects in the dressing's design. Journal of tissue viability. 2010 May 1;19(2):54-66.

Costache MC, Qu H, Ducheyne P, Devore DI. Polymer–xerogel composites for controlled release wound dressings. Biomaterials. 2010 Aug 1;31(24):6336-43..

Shen X, Yu D, Zhu L, Branford-White C, White K, Chatterton NP. Electrospun diclofenac sodium loaded Eudragit® L 100-55 nanofibers for colon-targeted drug delivery. International journal of pharmaceutics. 2011 Apr 15;408(1-2):200-7.

Demir MM, Gulgun MA, Menceloglu YZ, Erman B, Abramchuk SS, Makhaeva EE, Khokhlov AR, Matveeva VG, Sulman MG. Palladium nanoparticles by electrospinning from poly (acrylonitrile-co-acrylic acid)− PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity. Macromolecules. 2004 Mar 9;37(5):1787-92.

Ursula E. Spichiger-Keller. Chemical Sensors and Biosensors for Medical and Biological Applications, Wiley-VCH. 1998.


  • There are currently no refbacks.