Relative Expression of PPARγ and ADIPOQ mRNA as markers of Inhibition Adipogenesis on Mesenchymal Stem Cells after Pulsed Electromagnetic Field (PEMF) Exposure

Puji Sari

Abstract

ABSTRACT

Objective: Obesity has become a major health problem in the world. PEMF is a modality for healing obesity because its ability to inhibit adipogenesis. Adipogenesis involves PPARγ transcription factor which plays a role in activating adipogenic genes, including ADIPOQ. PPARγ is highly expressed in the early stages of adipogenesis and ADIPOQ is highly expressed in the termination phase of adipogenesis. Both of these genes can be used as a marker of adipogenesis. This study aimed to determine the level of PPARγ and ADIPOQ expression in the group of MSCs that were exposed to PEMF and the group of MSCs that were not exposed to PEMF.

Methods: The MSCs were exposed with PEMF intensity of Bmax = 2 mT, f = 75 Hz, 10 minutes a day for 14 days. Total RNA was extracted from MSCs from each treatment group on day 0 (calibrator), 2, 4, 7, and 14. PPARγ and ADIPOQ mRNA expressions were analyzed using the qRT-PCR method.

Results: The results of the qRT-PCR analysis showed that the expression of PPARγ and ADIPOQ mRNA in the group that exposed to PEMF was lower than the group of MSCs that were not exposed to PEMF (p <0.05).

Conclusion: PEMF exposure has an inhibitory effect on adipogenesis of MSCs. PEMF exposure decreased the relative expression of PPARγ and ADIPOQ mRNA.

 

 

Keywords: PEMF; Adipogenesis; Mesenchymal stem cells; PPARγ, ADIPOQ.

Full Text:

PDF

References

Hruby A and Hu FB. The Epidemiology of Obesity: A Big Picture. 2015. PharmacoEconomics, 33(7), 673–689. doi:10.1007/s40273-014-0243-x.

Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. 2019. Int. J. Mol. Sci. 20, 2358; doi:10.3390/ijms20092358.

Wyatt HR. Update on Treatment Strategies for Obesity. 2013. J Clin Endocrinol Metab. 98(4):1299 –1306. DOI: 10.1210/jc.2012-3115.

Dwyer JT, Melanson KJ, Sriprachy-anunt U, et al. Dietary Treatment of Obesity. [Updated 2015 Feb 28]. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK278991/.

Du L, Fan H, Miao H, Zhao G, and Hou Y. Extremely Low Frequency Magnetic Fields Inhibit Adipogenesis of Human Mesenchymal Stem Cells. 2014. Bioelectromagnetics. 35: 519-530. doi: 10.1002/bem.21873.

Sari P, Reihannisha I, Umiatin, Suryandari DA, and Yunaini L. Expression relative of RANK, RANKL and OPG gene on rat femoral fracture healing process in delayed union model after pulsed electromagnetic field exposure. 2019. J Glob. Pharma Technol. 11 (4): 223-230.

Ross CL. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. 2015. Stem Cell Res. 15: 96–108. doi: 10.1016/j.scr.2015.04.009.

Funk RH. Coupling of pulsed electromagnetic fields (PEMF) therapy to molecular grounds of the cell. Am J Transl Res. 2018;10(5):1260–1272. Published 2018 May 15.

Dave S, Kaur NJ, Nanduri R, Dkhar HK, Kumar A, et al. Inhibition of Adipogenesis and Induction of Apoptosis and Lipolysis by Stem Bromelain in 3T3-L1 Adipocytes. PLoS ONE. 2012; 7(1): e30831.

Cook D, Genever P. Regulation of mesenchymal stem cell differentiation. 2013. Adv Exp Med Biol. (786): 213. doi: 10.1007/978-94-007-6621-1_12.

Dodson MV. Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. 2015. J. Anim. Sci.93:457–481. doi: 10.2527/jas.2014-8221.

Storck K, Ell J, Regn S, Rittler-Ungetüm B, Mayer H, Schantz T, Müller D, Buchberger M. Optimization of in vitro cultivation strategies for human adipocyte derived stem cells. 2015. Adipocyte. 4(3): 181-187. doi:10.4161/21623945.2014.987580.

Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S. PPARγ and the Global Map of Adipogenesis and Beyond. 2014. Trends Endocrinol Metab. 25(6): 293–302. doi: 10.1016/j.tem.2014.04.001.

Ma X, Wang D, Zhao W, Xu L. Deciphering the Roles of PPARγ in Adipocytes via Dynamic Change of Transcription Complex. 2018. Front Endocrinol (Lausanne). 9: 473. doi:10.3389/fendo.2018.00473.

Akune T, Ohba S, Kamekura S, Yamaguchi M, et. al. PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. The Journal of Clinical Investigation. 2004. 113(6): 846-855.

Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications –a review. Nutrition Journal. 2014. 13(17): 1-10.

Yuan SM, Guo Y, Wang Q, Xu Y, Wang M. Over-expression of PPAR-γ2 gene enhances the adipogenic differentiation of hemangioma-derived mesenchymal stem cells in vitro and in vivo. 2017. Oncotarget. (8)70:115817-115828. doi: 10.18632/oncotarget.23705.

Kim JH, Lee JH, Park MC, Yoon I, Kim K. AIMP1 negatively regulates adipogenesis by inhibiting PPARγ. 2014. J. Cell Sci. 127: 4483-4493; doi: 10.1242/jcs.154930.

Lowe CE, O’Rahilly S, Rochford JJ. Adipogenesis at a glance. 2011. Journal of Cell Science. 124: 2681-2686. doi: 10.1242/jcs.079699.

Sarjeant K and Stephens JM. 2012. Adipogenesis. Cold Spring Harbor perspectives in biology, 4(9), a008417. doi:10.1101/cshperspect.a008417.

Pawitan JA, Liem IK, Suryani D, Bustami A, Purwoko RY. Simple lipoaspirate washing using a coffee filter. Asian biomedicine 2013; 7(3): 333-338.

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7.

Umiatin, Ismail Hadisoebroto Dilogo, Sastra Kusuma Wijaya, Puji Sari, Andika Dwiputra Djaja. Design and development of pulse electromagnetic fields (PEMF) as adjuvant therapy for fracture healing: A preliminary study on rats. AIP Conference Proceedings 2092, 020028 (2019); https://doi.org/10.1063/1.5096696.

Lane JM, Doyle JR, Fortin J, Kopin AS, Ordovás JM. Development of an OP9 Derived Cell Line as a Robust Model to Rapidly Study Adipocyte Differentiation. PLoS One. 2014; 9(11): e112123. doi: 10.1371/journal.pone.0112123.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 ΔΔ CT methods. 2001. Methods. 25(4): 40-8.

Park HS, Ju UI, Park JW, Song JY, Shin DH, Lee KH. PPARγ neddylation essential for adipogenesis is a potential target for treating obesity. 2016. Cell Death Differ. 23(8): 1296–1311. doi: 10.1038/cdd.2016.6.

Yadollahpour A and Rashidi S. Therapeutic Applications of Electromagnetic Fields in Musculoskeletal Disorders: A Review of Current Techniques and Mechanisms of Action. 2014. Biomedical & Pharmacology Journal. (7): 23- 32. DOI: http://dx.doi.org/10.13005/bpj/448.

Keung AJ, Kumar S, Schaffer DV. Presentation Counts: Microenvironmental Regulation of Stem Cells by Biophysical and Material Cues. Annu Rev Cell Dev Biol. 2010: 26: 533–556.

Zhang J, Li M, Kang E, Neoh KG. Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels. 2015. Acta Biomaterialia. 32: 46–56. doi: 10.1016/j.actbio.2015.12.024.

Brighton CT, Wang W, Seldes R, Zhang G, Pollack SR. Signal Transduction in Electrically Stimulated Bone Cells. 2001. JBJS ORG. 83-A(10): 1514-1523.

Uzieliene I, Bernotas P, Mobasheri A, Bernotiene E. The Role of Physical Stimuli on Calcium Channels in Chondrogenic Differentiation of Mesenchymal Stem Cells. 2018. Int J Mol Sci. (1)321-332. doi: 10.3390/ijms19102998.

Shi H, Halvorsen Y, Ellis PN,Wilkison WO, Zemel MB. Role of intracellular calcium in human adipocyte differentiation. 2000. Physiol Genomics. 3(2): 75-82.

Rubio AM, Syrovets T, Hafner S, Zablotski, Dajneka A, Simmet T. Spatiotemporal magnetic fields enhance cytosolic Ca2+ levels and induce actin polymerization via activation of voltage-gated sodium channels in skeletal muscle cells. 2018. Biomaterials. 163: 174-184. doi: 10.1016/j.biomaterials.2018.02.031.

Refbacks

  • There are currently no refbacks.